Lecture 6

- Cut off frequency of a waveguide
$h^{2}=\gamma^{2}+\omega^{2} \mu \varepsilon=A^{2}+B^{2}$
$\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}-\omega^{2} \mu \varepsilon=\gamma^{2}$
$\gamma=\sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}-\omega^{2} \mu \varepsilon}=\alpha+j \beta$
At lowerFrequencies
$\omega^{2} \mu \varepsilon<\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}$
higherfrequencies
$\omega^{2} \mu \varepsilon>\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}$
thefrequency at which γ justbecome zero is defined as cut-off frequency at $\mathrm{f}=\mathrm{f}_{\mathrm{c}}, \gamma=0$ or $\omega=2 \pi \mathrm{f}=2 \pi \mathrm{f}_{\mathrm{c}}=\omega_{c}$

$$
\begin{aligned}
& \left(\frac{m \pi}{a}\right)^{+}+\left(\frac{n \pi}{b}\right)^{2}=\omega_{c}^{2} \mu \varepsilon \\
& \omega_{c}=\frac{1}{\sqrt{\mu \varepsilon}}\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}\right]^{\frac{1}{2}} \\
& f_{c}=\frac{1}{2 \pi \sqrt{\mu \varepsilon}}\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}\right]^{\frac{1}{2}} \\
& f_{c}=\frac{c}{2 \pi}\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}\right]^{\frac{1}{2}} \\
& f_{c}=\frac{c}{2}\left[\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{c}=\frac{c}{f}=c / \frac{c}{2}\left[\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}\right]^{\frac{1}{2}} \\
& \lambda_{c m, n}=\frac{2 a b}{\sqrt{m^{2} b^{2}+n^{2} a^{2}}}
\end{aligned}
$$

Guided wave length

- Guided wave length : distance travelled by a wave in order to under go a phase shift of 2π radians
- Phase velocity: the rate at which the wave changes its phase in terms of the guided wavelength
- Group velocity: rate at which wave propagates through the guided wave length

$$
\begin{aligned}
& \lambda_{g}=\frac{2 \pi}{\beta} \text { guided wave length } \\
& \mathrm{V}_{\mathrm{p}}=\frac{\lambda_{g}}{\text { unittime }}=\lambda_{g} \cdot f=\frac{2 \pi}{\beta} f=\frac{\omega}{\beta} \\
& V_{g}=\frac{d \omega}{d \beta}
\end{aligned}
$$

Expression for phase velocity and group velocity

- Expression for phase velocity and group velocity

$$
h^{2}=\gamma^{2}+\omega^{2} \mu \varepsilon=A^{2}+B^{2}=\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}
$$

$$
\gamma=\alpha+j \beta
$$

$$
\gamma^{2}=(j \beta)^{2}=\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}-\omega^{2} \mu \varepsilon
$$

$$
\text { at } \mathrm{f}=\mathrm{f}_{\mathrm{c}}, \omega=\omega_{c}, \gamma=0
$$

$$
\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}=\omega_{c}^{2} \mu \varepsilon
$$

$$
\gamma^{2}=(j \beta)^{2}=\omega_{c}^{2} \mu \varepsilon-\omega^{2} \mu \varepsilon
$$

$$
\gamma^{2}=\beta^{2}=\omega^{2} \mu \varepsilon-\omega_{c}^{2} \mu \varepsilon
$$

$$
\beta=\sqrt{\omega^{2} \mu \varepsilon-\omega_{c}^{2} \mu \varepsilon}
$$

$$
\beta=\sqrt{\left(\omega^{2}-\omega_{c}^{2}\right) \mu \varepsilon}
$$

$$
\begin{aligned}
& V_{p}=\frac{\omega}{\beta}=\frac{\omega}{\sqrt{\left(\omega^{2}-\omega_{c}^{2}\right) \mu \varepsilon}} \\
& V_{p}=\frac{\omega}{\sqrt{\left(\omega^{2}-\omega_{c}^{2}\right) \mu \varepsilon}} \\
& V_{p}=\frac{1}{\sqrt{\mu \varepsilon} \sqrt{\left(1-\frac{f_{c}}{f}\right)^{2}}} \\
& f_{c}=\frac{c}{\lambda} a n d f=\frac{\lambda_{c}}{\lambda_{o}} \\
& V_{p}=\frac{\sqrt{1}}{V_{p}}=\frac{\sqrt{\mu \varepsilon} \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}}{\sqrt{1-\left(\frac{\lambda_{o}}{\lambda_{c}}\right)^{2}}} \\
& V_{g}=c \sqrt{1-\left(\frac{\lambda_{o}}{\lambda c}\right)^{2}} \\
& V_{p}=v_{g}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \beta=\sqrt{\left(\omega^{2}-\omega_{c}{ }^{2}\right) \mu \varepsilon} \\
& \frac{d \beta}{d \omega}=\frac{1}{2 \sqrt{\left(\omega^{2}-\omega_{c}^{2}\right) \mu \varepsilon}} \cdot 2 \omega \mu \varepsilon \\
& \frac{d \beta}{d \omega}=\frac{\sqrt{\mu \varepsilon}}{\sqrt{1-\left(\frac{\omega_{c}}{\omega}\right)^{2}}}=\frac{\sqrt{\mu \varepsilon}}{\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}} \\
& V_{g}=c \sqrt{1-\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}} \\
& V_{g} . V_{p}=c^{2}
\end{aligned}
$$

Relation between them

$$
\begin{aligned}
& V_{p}=\lambda_{g} \cdot f \\
& V_{p}=\frac{\lambda_{g}}{\lambda_{0}} \cdot c \\
& V_{p}=\frac{c}{\sqrt{1-\left(\frac{\lambda_{0}}{\lambda c}\right)^{2}}} \\
& \lambda_{g}=\frac{\lambda_{0}}{\sqrt{1-\left(\frac{\lambda_{0}}{\lambda c}\right)^{2}}}
\end{aligned}
$$

